Crystallography

- The unit cell
- Space groups
- Bragg's law
- The structure factor

Magnus H. Sørby Institute for Energy Technology, Norway

Motivation

Single crystals

Powder

NNSP School Tartu 2017

Some definitions

Crystal or crystalline solid: a solid material whose constituents, such as atoms, molecules or ions, are arranged in a highly ordered microscopic structure.

Polycrystalline materials (*powder*) are solids that are composed of many crystallites of varying size and orientation. Crystallites are also referred to as grains.

Amorphous solids: the atoms have no periodic structure whatsoever.

Polycrystalline

Some definitions

Some definitions

The unit cell

The *smallest* unit that can be repeated in all directions to build up the crystal structure *and* shows the full symmetry of the crystal structure.

Is the unit cell?

The unit cell

The *smallest* unit that can be repeated in all directions to build up the crystal structure *and* shows the full symmetry of the crystal structure.

The unit cell

The *smallest* unit that can be repeated in all all directions to build up the crystal structure *and* shows the full symmetry of the crystal structure.

Unit cell dimensions: a, b, c, angles: α , β , γ or defined by three vectors **a**, **b**, **c**

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

(1) 1

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Origin on 2 **Asymmetric unit** $0 \le x \le 1; \quad 0 \le y \le 1; \quad 0 \le z \le \frac{1}{2}$

Symmetry operations

(1) 1 (2) 2 0,y,0

CONTINUED		No. 3	P2		
Generators selected (1); $t(1,0,0)$; $t(1,0,0)$	(0,1,0); t(0,0,1); (2)				
Positions Multiplicity, Cor Wyckoff letter,	ordinates	Reflectio	n conditions		
Site symmetry $2 e 1$ (1) x, y, z (2) \tilde{x}, y, \tilde{z}	7	General: no condi	tions		
$1 d 2 \qquad \frac{1}{2}, y, \frac{1}{2}$		Special:	no extra conditions		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Symmetry of special projections Along $[001] p 1 m 1$ $a' = a_p$ $b' = b$ Orden at 0.0 z	Along [100] $p \ 1 \ 1 \ m$ $\mathbf{a}' = \mathbf{b} \qquad \mathbf{b}' = \mathbf{c}_p$ Origin at $\mathbf{r} \ 0 \ 0$	Along $\begin{bmatrix} 010 \end{bmatrix} p^2$ $\mathbf{a}' = \mathbf{c}$ $\mathbf{b}' = \mathbf{a}$ Origin at 0, y, 0			

Maximal non-isomorphic subgroups

I [2] P1 (1) 1

- IIa none

Maximal isomorphic subgroups of lowest index

IIc [2] P 1 2 1 (b' = 2b) (P2, 3); [2] P 1 2 1 (c' = 2c or a' = 2a or a' = a + c, c' = -a + c) (P2, 3)

Minimal non-isomorphic supergroups

- $\begin{array}{ll} \mathbf{I} & [2] P2/m (10); [2] P2/c (13); [2] P222 (16); [2] P222_1 (17); [2] P2_1 2_1 2 (18); [2] C222 (21); [2] Pmm2 (25); [2] Pcc2 (27); [2] Pma2 (28); [2] Pnc2 (30); [2] Pba2 (32); [2] Pnn2 (34); [2] Cmm2 (35); [2] Ccc2 (37); [2] P4 (75); [2] P4_2 (77); [2] P \tilde{4} (81); [3] P6 (168); [3] P6_2 (171); [3] P6_4 (172) \end{array}$
- II [2] C121 (C2, 5); [2] A121 (C2, 5); [2] I121 (C2, 5)

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Up to 230 different ways to replicate a finite object in 3-dimensional space.

\Rightarrow 230 space groups

Pm	Р	Р	Р
	Ь Р	Ь Р	Ь Р
	Ь	Ь	Ь

	Pr	Π	Π	1	2	
--	----	---	---	---	---	--

Р	9 P	9 P	P
Ь	dЬ	d b	Ь
Р	9 P	9 P	<u>Р</u>
Ь	dЬ	dЬ	Ь

Сп	٦M	2						
F	, P	Ь	Р _d	ЬЧ	Ρ	Ы	Ь	q
Ŀ	Ρ,	Pd	ЬЧ	Pd	Ь	9	Ρ	Ь
F	, P	Ь	Pd	ЬЧ	Р	đ	Ъ	q
E	Ρ,	Pd	ьЧ	Pd	ь	9	Р	đ

Diffraction

- Laser at slits gives line of diffractions points
- Repeating units in three dimensions give rise to diffraction pattern
- Repeating units: Unit cells

Diffracting object (Real space)

1/a

Direction of diffracted beams: Laue's interference condition

• To get interference (assuming elastic scattering): $AQ-PB = b(\cos\psi_2 - \cos\phi_2) = m\lambda$ (m = integer)

• In 3D: $a(\cos\psi_1 - \cos\phi_1) = h\lambda$ $b(\cos\psi_2 - \cos\phi_2) = k\lambda$ $c(\cos\psi_3 - \cos\phi_3) = \hbar$ Laue equations

Direction of diffracted beams: Bragg's law

Miller indices

The (*hkl*) plane makes intercepts **a**/*h*, **b**/*k* and **c**/*l* along the x, y, z axes.

The direction [hkl] is perpendicular to the (hkl) plane.

a,b,c: Unit cell dimensions

The (*hkl*) plane makes intercepts **a**/*h*, **b**/*k* and **c**/*l* along the x, y, z axes.

The direction [hkl] is perpendicular to the (hkl) plane.

a,b,c: Unit cell dimensions

Miller indices

The (*hkl*) plane makes intercepts **a**/h, **b**/k and **c**/l along the x, y, z axes.

The direction [*hkl*] is perpendicular to the (*hkl*) plane.

a,b,c: Unit cell dimensions

Bragg's law

Ex. Orthorhombic crystal system:

$$d_{hkl} = \frac{1}{\sqrt{(\frac{h}{a})^2 + (\frac{k}{b})^2 + (\frac{l}{c})^2}}$$

Cubic:
$$a d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Reciprocal space

Definitions:

a*, **b***, **c***: Reciprocal lattice vectors $\mathbf{a}^* = \frac{2\pi}{V_c} (\mathbf{b} \ x \ \mathbf{c}); \ \mathbf{b}^* = \frac{2\pi}{V_c} (\mathbf{c} \ x \ \mathbf{a}); \ \mathbf{c}^* = \frac{2\pi}{V_c} (\mathbf{a} \ x \ \mathbf{b})$

 V_c = volume of the unit cell

a* perpendicular to the plane containing b and c
b* to plane containing a and c
c* to plane containing a and b

 $\mathbf{a}^* \cdot \mathbf{b} = \mathbf{a}^* \cdot \mathbf{c} = \mathbf{b}^* \cdot \mathbf{a} = \mathbf{b}^* \cdot \mathbf{c} = \mathbf{c}^* \cdot \mathbf{a} = \mathbf{c}^* \cdot \mathbf{b} = 0$ $\mathbf{a}^* \cdot \mathbf{a} = \mathbf{b}^* \cdot \mathbf{b} = \mathbf{c}^* \cdot \mathbf{c} = 1$

WHY BOTHER WITH THIS???

Real space vs. Reciprocal space

- Real space
 - *hkl*: Indices for set of planes
 - *a*, *b*, *c*: Vectors defining unit cell
- Reciprocal space
 - $H_{hkl} = ha^* + kb^* + c^*$
 - *hkl*: Coordinates of points
 - **a***, **b***, **c*** : Basal vectors in reciprocal lattice
 - $\mathbf{H}_{hkl} \perp (hkl)$
 - $|\mathbf{H}_{hkl}| = 2\pi/d_{hkl}$

Elastic scattering: $|\mathbf{k}_i| = |\mathbf{k}_f| = 2\pi/\lambda$

$$\label{eq:Q} \begin{split} Q \equiv k_f \text{ - } k_i \\ \text{the scattering vector} \end{split}$$

New condition for constructive interference: $Q = H_{hkl}$

NNSP School Tartu 2017

Ewald's sphere construction

Parallel and monochromatic beam

When reciprocal lattice point *hkl* on Ewald's sphere \Rightarrow Bragg's law satisfied for the plane (*hkl*) and Bragg-scattering in that direction.

Diffraction patterns

- The reciprocal lattice can be measured
- The positions of the spots (for single crystals) or lines (for powders) are given from Bragg's law

• What about the intensities?

NNSP School Tartu 2017

Properties of Q

- **Q** is perpendicular to the scattering plane

-
$$|\mathbf{Q}| = \frac{4\pi \sin(\theta)}{\lambda} = \frac{2\pi}{d}$$

Scattering from ideal crystals

NNSP School Tartu 2017

Scattering from ideal crystals

The reciprocal lattice

The structure factor

$$F(\mathbf{Q}) = \sum_{j} b_{j} \cdot e^{i\vec{Q}\cdot\vec{r}_{j}}$$
Neutrons: $b_{j} = \text{scattering length}$
X-rays: $b_{j} = f_{\text{at,j}} = \text{atomic form factor}$
$$F_{hkl} = \sum_{\substack{\text{Unit} \\ \text{cell}}} b_{j} \cdot e^{2\pi i(h \cdot x_{j} + k \cdot y_{j} + l \cdot z_{j})}$$

Intensity of scattered beams:

Displacement factor (Debye Waller factor, temperature factor):

$$T_{j} = e^{-W_{j}}, W_{j} = 8\pi^{2} \langle u_{j}^{2} \rangle \frac{\sin^{2} \theta}{\lambda^{2}} = 1/2 Q^{2} \langle u_{j}^{2} \rangle$$

In total:

$$F_{hkl} = \sum_{\substack{\text{Unit}\\\text{cell}}} b_{j} \cdot e^{2\pi i(h \cdot x_{j} + k \cdot y_{j} + l \cdot z_{j})} \cdot e^{-1/2Q^{2} \langle u_{j}^{2} \rangle}$$

NNSP School Tartu 2017

Structure factor calculation (joint effort ©)

Task: Calculate the expression for the structure factor of body-centered cubic Fe.

Fe in 0 0 0 and $\frac{1}{2}$ $\frac{1}{2}$

The phase problem

Definition

$$FT[f(x)] = \tilde{f}(k) = \int f(x)e^{ikx}dx$$

Inverse Fourier transform: $FT^{-1}[\tilde{f}(k)] = \int \tilde{f}(k)e^{-ikx}dk$

The structure factor is the Fourier transformation of:

- The density of atom cores (scattering lengths) for neutrons
- The electron density for X-rays

NNSP School Tartu 2017

The phase problem

 $I_{hkl} \propto |F_{hkl}|^2$

$$\boldsymbol{F}_{hkl} = \Sigma \mathbf{b}_{j} \mathbf{e}^{2\pi \mathbf{i}(h\mathbf{x}_{j}+k\mathbf{y}_{j}+l\mathbf{z}_{j})} = |\boldsymbol{F}_{hkl}| \mathbf{e}^{\mathbf{i}\boldsymbol{\varphi}_{hkl}}$$

• The nuclear density:

$$\rho(x, y, z) = \widetilde{F}_{hkl} = \frac{1}{V_c} \sum_{h} \sum_{l=\infty}^{\infty} \sum_{l} \left| F_{hkl} \right| e^{i\varphi_{hkl}} e^{-2\pi i(hx+ky+lz)}$$

• It is impossible to calculate $\rho(x, y, z)$ as inverse Fourier transformation of the structure factors as long as φ_{hkl} are unknown

\Rightarrow The phase problem in crystallography

Methods to solve the phase problem

Patterson function: Fourier transformation of |F_{hkl}|² without phases:

$$P(u,v,w) = \frac{2}{V_c} \sum_{h} \sum_{k} \sum_{k} \sum_{k} \left| F_{hkl} \right|^2 \cos 2\pi (hu + kv + lw)$$

Self-convolution. Peaks in the Patterson function represent a vector between two atoms; weighted by the product of their scattering power. Used to determine positions of strong scatterers.

• **Direct methods**: Uses statistic relations between observed intensities to guess on phases. Very efficient when scatterers are of similar strength and many independet structure factor amplitues are collected (single crystal)

⇒ THEN...

• Difference Fourier: Locate missing atoms $\Delta \rho(x, y, z) = \frac{2}{V_c} \sum_{h} \sum_{k=0}^{\infty} \sum_{l} (|F_o| - |F_c|) \cos[2\pi (hx + ky + lz) - \varphi_c]$

Most important points

• The condition for constructive interference (Bragg scattering) is given by Bragg's law

or the condition that the scattering vector \mathbf{Q} equals a resiprocal lattice vector: $\mathbf{Q} = \mathbf{Q}_{hkl}$ (Laue condition)

Most important points

The scattered wave from a collection of atoms is described by the structure factor

$$F(\vec{Q}) = \sum_{j}^{N} b_{j} e^{i\vec{Q}\cdot\vec{r}_{j}} = \sum_{j}^{N} b_{j} e^{2\pi i(hx_{j}+ky_{j}+lz_{j})}$$

For atoms in an infitinally repeating lattice, F(Q) is non-zero only when $Q = Q_{hkl}$

$$F(\vec{Q}_{hkl}) = \sum_{j}^{N} b_j \ e^{2\pi i (hx_j + ky_j + lz_j)}$$

And of course: $I \propto |\mathbf{F}|^2$

Power Neutron Diffraction vs Powder X-ray Diffraction

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.

• The neutron interacts weakly with matter.

• The neutron has a magnetic moment.

Metal hydrides

• Materials that contain chemical bonding between metal- and hydrogen atoms.

Crystal structure of alanates

NaAlH₄ Na₃AIH₆ **LiAlH**₄ β-LiAlH₄ Li₃AIH₆ **KAIH**₄ $Mg(AIH_4)_2$ Sr₂AIH₇ **BaAlH**₅ Ba₂AIH₇ Na₂LiAlH₆ K₂NaAlH₆ $LiMg(AIH_4)_2$ LiMgAIH₆ $Ca(AID_4)_2$ CaAID₅

PUS - high resolution diffractometer

The JEEPII reactor

 Li_3AID_6 seen by neutrons

Crystal structure of alanates

NaAlH₄ Na₃AIH₆ **LiAlH**₄ β-LiAlH₄ Li₃AIH₆ **KAIH**₄ $Mg(AIH_4)_2$ Sr₂AIH₇ **BaAlH**₅ Ba₂AIH₇ Na₂LiAIH₆ K₂NaAlH₆ $LiMg(AIH_4)_2$ LiMgAIH₆ $Ca(AID_4)_2$ CaAID₅

PUS - high resolution diffractometer

SNBL/ESRF (Grenoble, France)

 $LiMg(AIH_4)_3$

 $Mg(AIH_4)_2$ $CaAIH_5$

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.

- Can distinguish neighboring elements in the periodic table.
- The neutron interacts weakly with matter.

• The neutron has a magnetic moment.

β-Mn: Cubic, complex structure, a = 6.31 Å,

Z = 20

 $Mn(1)_{12}Mn(2)_{8}$

What happens when 40% of the Mn is substituted with Co?

β -Mn: Cubic, complex structure, a = 6.31 Å, Z = 20

$[Mn_{0.6}Co_{0.4}](1)_{12}[Mn_{0.6}Co_{0.4}](2)_{8}$

What happens if 40% of the Mn is substituted with Co?

 β -Mn: Cubic, complex structure, a = 6.31 Å,

Z = 20

 $Mn(1)_{12}Co(2)_{8}$

What happens if 40% of the Mn is substituted with Co?

Which model is right for Mn_{0.6}Co_{0.4}?

Which model is right for Mn_{0.6}Co_{0.4}?

Which model is right for Mn_{0.6}Co_{0.4}?

Co selectively occupy the 8-fold position!

O. B. Karlsen, et al. J. Alloys Comp., 2009, 476 (2009) 9-13

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.
 - Can distinguish neighboring elements in the periodic table.

- The neutron interacts weakly with matter.
 - Complicated sample environment is possible.

• The neutron has a magnetic moment.

Penetration

NNSP School Tartu 2017

Sample environment

• Neutrons can penetrate several millimeters of materials like aluminium and steel.

Sample container (Inconel super-alloy) rated to 3000 bar and 600°C.

Sample environment

• Neutrons can penetrate several millimeters of materials like aluminium and steel.

Cryostat

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.
 - Can distinguish neighboring elements in the periodic table.

- Complicated sample environment is possible.
- Large samples can be studied.
- The neutron has a magnetic moment.

Study of large samples

 How did the machining of the hole influence the material?

Study of large samples

Penetration depth

Study of large samples

Loading a sample at the NRSF2 instrument at Oak Ridge National Lab (US) 3D residual stress-field can be mapped in a non-destructive way!

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.
 - Can distinguish neighboring elements in the periodic table.

- The neutron interacts weakly with matter.
 - Complicated sample environment is possible.
 - Large samples can be studied.
 - Easy interpreations of scattering intensities.
- The neutron has a magnetic moment.

Scattering intensity

$$I = |F_K|^2 = \left|\sum_{i} b_i \cdot e^{i(\vec{r}_i \cdot \vec{Q})}\right|^2 = \left|\sum_{i} b_j \cdot e^{2\pi i(hx_j + hy_j + lz_j)}\right|^2$$

• Can (usually) neglect effects of multiple scattering and absorption.

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
 - Can get information about light and heavy elements simultaneously.
 - Can distinguish neighboring elements in the periodic table.

- Complicated sample environment is possible.
- Large samples can be studied.
- Easy interpreations of scattering intensities.
- The neutron has a magnetic moment.
 - Can study magnetic ordering.

- The neutron has a magnetic moment.
- This will interact with the magnetic moment of atoms with unpaired electrons.

$$\begin{split} \vec{F}_{magnetic,hkl} &= \sum_{i} \vec{m}_{i} f_{i} \cdot e^{2\pi i(hx_{i}+ky_{i}+lz_{i})} \\ \vec{m} &= \vec{K}(\vec{K} \cdot \vec{M}) - \vec{M}, \qquad \left| \vec{m} \right| = \sin \alpha \\ \left| \vec{m} \right| &= 0, \qquad \vec{K} \parallel \vec{M} \\ \left| \vec{m} \right| &= 1, \qquad \vec{K} \perp \vec{M} \qquad I_{hkl} \propto \left| F_{hkl} \right|^{2} = \left| F_{nucl,hkl} \right|^{2} + \left| F_{magnetic,hkl} \right|^{2} \end{split}$$

NNSP School Tartu 2017

Conclusion

Powder neutron diffraction has some major differences from powder X-ray diffraction:

- Different contrast
 - Information about light and heavy elements at the same time.
 - Often good contrast from elements with similar atomic number.
- Weak interactions
 - Scattering from bulk
 - Easy interpreation of intensities
- Magnetic scattering