

Magnetic Scattering

Diana Lucia Quintero Castro

Department of Mathematics and Natural Sciences University of Stavanger **uis.no**

14/09/2017

Contents- First part

- Introduction to Magnetism
- Example 1: MnO
- Partial differential cross section
- Electron and Neutron dipolar interaction
- Magnetic matrix element
- Time independent scattering cross section Magnetic diffraction

Magnetic Materials

Length Scale

naked eye Permanent magnet

magnetic force microscope GdFe multilayer films

Magnetic neutron diffraction

Kagome antiferromagnet

Electron Configuration- Hund's Rules

Electron 1s2p configuration 2s Atom t I $1s^{2}2s^{1}$ Li t+ t I $1s^{2}2s^{2}$ Be tŧ. †ŧ 1s²2s²2p¹ в †‡ †ŧ 1s²2s²2p² С tŧ. †† 1s²2s²2p³ Ν **t**↓ t↓ 1 I t 1s²2s²2p⁴ 0 t I t↓ **†**↓ 1s²2s²2p⁵ F 1↓ 11 ţ† ţţ 11 1s²2s²2p⁶ Ν

back to modern physics

Group Period	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H 1.008																		2 He 4.0026
2	3 Li 6.94	4 Be 9.0122												5 B 10.81	6 C 12.011	7 N 14.007	8 0 15.999	9 F 18.998	10 Ne 20.180
3	11 Na 22.990	12 Mg 24.305												13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
4	19 K 39.098	20 Ca 40.078		21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.63	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
5	37 Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.96	43 Tc [97.91]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	•	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (208.98)	85 At (209.99)	86 Rn [222.02]
7	87 Fr [223.02]	88 Ra [226.03]		103 Lr [262.11]	104 Rf [265.12]	105 Db [268.13]	106 Sg [271.13]	107 Bh [270]	108 Hs [277.15]	109 Mt [276.15]	110 DS [281.16]	111 Rg [280.16]	112 Cn [285.17]	113 Uut [284.18]	114 FI [289.19]	115 Uup [288.19]	116 Lv [293]	117 Uus [294]	118 Uuo [294]
				57	58	59	60	61	62	63	64	65	66	67	68	69	70		
*La	nthanoid	ds	*	La 138.91	Ce 140.12	Pr 140.91	Nd 144.24	Pm (144.91)	Sm 150.36	Eu 151.96	Gd 157.25	Tb 158.93	Dy 162.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.05		
	Actinoids	8	••	89 Ac [227.03]	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237.05)	94 Pu (244.06)	95 Am (243.06)	96 Cm [247.07]	97 Bk [247.07]	98 Cf (251.08)	99 Es (252.08)	100 Fm [257.10]	101 Md [258.10]	102 No [259.10]		

Orbital angular momentum:Spin quantum number:Total angular momentum: $L = \sum_{i} l_i$ $S = \sum_{i} s_i$ J = L + S

Total Magnetic moment

For an electron with I=1: Lz=h

$$\mu_B = \frac{e h}{2m_e} = 9.274 \times 10^{-24} J/T$$

Bohr Magneton – used as a Unit

$$\mu_{eff} = g\mu_B \sqrt{J(J+1)}$$

Magnetic Exchange Interaction

Example: Manganosite (MnO)

Space Group	F m -3 m(225)	Pearson Symbol	cF8	3		Meas. Dens.	5.36	
Crystal System	cubic	Crystal Class	m-	m-3m		Laue Class	m-3m	
Wyckoff Sequence	ba	Structure Type	Na	Cl				
Axis Ratios	a/b 1.0000	b/c 1.0000	c/a	1.0000				
-								
Remark								
EL Lbl (OxState	WyckSymb	Х	Y	z	В	SOF	н
Mn 1 ·	+2.00	4a	0	0	0	0.617(5)		
01	-2.00	4b	0.5	0.5	0.5	0.72(1)		

C. G. Shull & J. S. Smart, Phys. Rev. 76 (1949) 1256

Partial differential cross section

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{k_{f}}{k_{i}} \left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2} \left|\left\langle\lambda'k'\sigma'\left[\hat{V}\right]\lambda k\sigma\right\rangle\right|^{2} \delta(E_{\lambda} - E_{\lambda'} + \hbar\omega)$$

Dipole-dipole interaction

Magnetic Moment of Electron Systems

back to electrodynamics

e-N Orbital contribution:

$$\boldsymbol{\mu}_l = \mu_B \boldsymbol{l}$$

Spin contribution:

$$\boldsymbol{\mu}_{s} = g \mu_{B} \boldsymbol{s}$$

$$g = 2.0023$$

By now— Only spin contribution $oldsymbol{\mu}_e=g\mu_Boldsymbol{s}$

Bohr magneton:

$$\mu_{B} = -\pi r^{2}I = \frac{rev}{2} = -\frac{e\hbar}{2m_{e}}$$
$$\mu_{B} = 5.788.10^{-5} eV/T$$

Neutron's magnetic properties

The magnetic moment is given by the neutron's spin angular momentum

 $\boldsymbol{\mu}_{n} = -\gamma \mu_{B} \frac{m_{e}}{m} \widehat{\boldsymbol{\sigma}} \qquad \qquad \text{Gyromagnetic ratio,} \qquad \gamma = 1.97 \\ \widehat{\boldsymbol{\sigma}} : \text{Pauli spin operator, eigenvalues } \pm 1$ Gyromagnetic ratio, $\gamma = 1.97$

And for the electron:

 $\boldsymbol{\mu}_e = g \boldsymbol{\mu}_B \boldsymbol{s}$

$$\mu_n \ll \mu_e, \qquad \frac{\mu_e}{\mu_n} = \frac{m}{m_e \gamma} = \frac{1836}{1.913} = 960$$

Potential energy of a dipole in a field

Potential:

$$V(\vec{r}) = -\vec{\mu}.\vec{B}(\vec{r})$$

Torque:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Force:

 $\vec{F} = \nabla(\vec{\mu}.\vec{B})$

Generated Magnetic Field by one electron

$$\vec{B} = \frac{\mu_0}{4\pi} \vec{\nabla} \times \left(\frac{\vec{\mu}_e \times \hat{R}}{R^2}\right) = \frac{\mu_0}{4\pi} \vec{\nabla} \times \left(g\mu_B \frac{\vec{s} \times \vec{R}}{R^3}\right)$$

$$V(\vec{r}) = -\overrightarrow{\mu_n} \cdot \left(\vec{\nabla} \times \left(\frac{\mu_0}{4\pi} g \mu_B \frac{\vec{s} \times \vec{R}}{R^3} \right) \right)$$

$$V(\vec{r}) = \gamma \mu_B \frac{m_e}{m} \hat{\boldsymbol{\sigma}} \cdot \left(\vec{\nabla} \times \left(\frac{\mu_0}{4\pi} g \mu_B \frac{\vec{s} \times \vec{R}}{R^3} \right) \right)$$

$$V(\vec{r}) = \frac{\mu_0}{4\pi} g \mu_B^2 \gamma \frac{m_e}{m} \hat{\boldsymbol{\sigma}} \cdot \left(\vec{\nabla} \times \left(\frac{\vec{s} \times \vec{R}}{R^3} \right) \right)$$

Generated magnetic field by multiple electrons

$$\sum_{j} V(\vec{r}_{j}) = \sum_{j} \frac{\mu_{0}}{4\pi} g \mu_{B}^{2} \gamma \frac{m_{e}}{m} \widehat{\boldsymbol{\sigma}}. \left(\vec{\nabla} \times \left(\frac{\vec{s}_{j} \times (\vec{r} - \vec{r}_{j})}{\left| \vec{r} - \vec{r}_{j} \right|^{3}} \right) \right)$$

Back to the partial differential cross section

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{k_{f}}{k_{i}} \left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2} \left| \left\langle \lambda' k'\sigma' \left| \hat{V} \right| \lambda' k\sigma \right\rangle \right|^{2} \delta(E_{\lambda} - E_{\lambda'} + \hbar\omega) \right.$$

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{k_{f}}{k_{i}} \left(\frac{m_{n}}{2\pi\hbar^{2}}\right)^{2} \left| \left\langle \lambda' k'\sigma' \left| \frac{\mu_{0}}{4\pi} g\mu_{B}^{2}\gamma \frac{m_{e}}{m} \widehat{\sigma} \right| \left(\vec{\nabla} \times \left(\frac{\vec{s}_{j} \times (\vec{r} - \vec{r}_{j})}{\left| \vec{r} - \vec{r}_{j} \right|^{3}} \right) \right) \right| \lambda k\sigma \right|^{2} \delta(E_{\lambda} - E_{\lambda'} + \hbar\omega)$$

The magnetic matrix element

$$\vec{\nabla} \times \left(\frac{\vec{s} \times \vec{r}}{|\vec{r}|^3}\right) = \frac{1}{2\pi^2} \int \hat{q}' \times (\vec{s} \times \hat{q}') e^{\left(i\vec{q}'.\vec{r}\right)} d^3 \vec{q}'$$

$$\frac{1}{2\pi^2} \left\langle \lambda' k' \sigma' \left| \sum_j \int \widehat{\boldsymbol{\sigma}}. \left(\widehat{q}' \times \left(\overrightarrow{s_j} \times \widehat{q}' \right) e^{\left(i \overrightarrow{q}' \cdot \overrightarrow{r_j} \right)} \right) d^3 \overrightarrow{q}' \left| \lambda k \sigma \right\rangle = 4\pi \left\langle \lambda' \sigma' \left| \sum_j e^{\left(i \overrightarrow{q} \cdot \overrightarrow{r_j} \right)} \widehat{\boldsymbol{\sigma}}. \left(\widehat{q} \times \left(\overrightarrow{s_j} \times \widehat{q} \right) \right| \lambda \sigma \right\rangle$$

Neutrons only ever see the components of the magnetization that are perpendicular to the scattering vector!

$$\mathbf{r}_{0} \frac{g}{2} F(\vec{q}) \langle \lambda' \sigma' | \hat{\boldsymbol{\sigma}}. \vec{s}_{\perp} | \lambda \sigma \rangle$$

Magnetic form factor:

$$F(\vec{q}) = \int s(\vec{r}) e^{(i\vec{q}.\vec{r})} d\vec{r}$$

Spatial extend of the spin density

 $s_{j\perp}$

https://www.ill.eu/sites/ccsl/ffacts/ffachtml.html

Scattering cross section

$$\mathbf{r}_{0} \frac{g}{2} F(\vec{q}) \langle \lambda' \sigma' | \widehat{\boldsymbol{\sigma}}. \vec{s}_{\perp} | \lambda \sigma \rangle$$

Where, r_0 is the classical electron radius:

$$r_0 = \gamma \frac{\mu_0}{4\pi} \frac{e^2}{m_e} = 0.54 \times 10^{-12} \text{ cm}$$

Similar to the bound coherence scattering length for many nuclei

- We can only measure spin components perpendicular to the transfered momentum
- The strenght of the magnetic scattering is close to the nuclear scattering
- The magnetic scattering depends on the spatial distribution of the spin density of the sample
- The magnetic scattering strength falls off at high wave vector transfers

Generalization

$$r_{0} \frac{g}{2} F(\vec{q}) \langle \lambda' \sigma' | \hat{\boldsymbol{\sigma}} \cdot \vec{s}_{\perp} | \lambda \sigma \rangle$$

$$4\pi \vec{Q}_{\perp} = \sum_{i} \langle k' | W_{si} + W_{Li} | k \rangle$$

Orbital

Axes

Scattering cross section – time dependence

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} r_0^2 \left| \frac{g}{2} F(\vec{q}) \right|^2 e^{-2W(k)} \frac{1}{2\pi\hbar} \int dt \, e^{-i\omega t} \sum_j e^{i\vec{q}.(\vec{r}-\vec{r}_j)} \times \left\langle \langle \sigma | \vec{\sigma}. s_\perp(0) | \sigma' \rangle \langle \sigma' | \vec{\sigma}. s_\perp(t) | \sigma \rangle \right\rangle$$

For unpolarized neutrons, $\sigma \leftrightarrow \sigma'$

Scattering cross section – Static

$$\frac{d\sigma}{d\Omega} = \frac{k}{k_{l}} r_{0}^{2} \left| \frac{g}{2} F(\vec{q}) \right|^{2} e^{-2W(k)} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{q}_{\alpha}\hat{q}_{\beta}) \frac{1}{2\pi\hbar} \sum_{ll'} e^{i\vec{q}.(\vec{r_{ld}} - \vec{r}_{ld'})} \langle S_{l}^{\alpha} \rangle \left\langle S_{l'}^{\beta} \right\rangle$$

Magnetic Scattering II

Diana Lucia Quintero Castro

Department of Mathematics and Natural Sciences University of Stavanger **uis.no**

14/09/2017

Contents- Second part

- Paramagnet
- Ferromagnet
- Antiferromagnet
- Examples: MnO and SrYb₂O₄
- Superconductors
- Diffuse elastic magnetic scattering
- 2D magnets
- Parametric studies
- Experimental methods

Scattering cross section

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} r_0^2 \left| \frac{g}{2} F(\vec{q}) \right|^2 e^{-2W(k)} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{q}_{\alpha}\hat{q}_{\beta}) \frac{1}{2\pi\hbar} \int dt \ e^{-i\omega t} \sum_{ll'} e^{i\vec{q}.(\vec{r_{ld}} - \vec{r}_{ld'})} \left\langle S_l^{\alpha}(0) S_{l'}^{\beta}(t) \right\rangle$$

Diffraction from a Paramagnet

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = \frac{k_{f}}{k_{i}} r_{0}^{2} \left| \frac{g}{2} F(\vec{q}) \right|^{2} e^{-2W(k)} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{q}_{\alpha}\hat{q}_{\beta}) \frac{1}{2\pi\hbar} \int dt \ e^{-i\omega t} \sum_{ll'} e^{i\vec{q}.(\vec{r_{ld}} - \vec{r}_{ld'})} \left\langle S_{l}^{\alpha}(0)S_{l'}^{\beta}(t) \right\rangle$$

$$\left\langle S_{l}^{\alpha}(0)S_{l'}^{\beta}(t) \right\rangle = \left\langle S_{l}^{\alpha}S_{l'}^{\beta} \right\rangle = \delta_{\alpha\beta} \langle (S_{0}^{\alpha})^{2} \rangle = \frac{1}{3} \delta_{\alpha\beta} S(S+1)$$

$$\frac{d\sigma}{d\Omega} = \frac{2}{3} r_{0}^{2} N \left| \frac{g}{2} F(\vec{q}) \right|^{2} e^{-2W(k)} S(S+1)$$

Diffuse scattering (continuosly distributed over all scattering directions)

Diffraction from a Ferromagnet

 $\langle S_l^{\mathcal{X}} \rangle = \left\langle S_l^{\mathcal{Y}} \right\rangle = 0$

 $\langle S_l^z \rangle = \langle S^z \rangle$ Proportional to the domain's magnetisation

$$\frac{d\sigma}{d\Omega} = r_0^2 N \left| \frac{g}{2} F(\vec{q}) \right|^2 e^{-2W(k)} \left(1 - \widehat{q_z}^2 \right) \langle S^z \rangle^2 \sum_{l} e^{i\vec{q} \cdot (\vec{r_{ld}})}$$

$$\sum_{l} e^{i\vec{q}.(\vec{r_{l}})} = \frac{(2\pi)^{3}}{v_{0}} \sum_{\tau_{m}} \delta(\vec{q}.\vec{\tau_{m}})$$

Reciprocal lattice vector (magnetic)

Diffraction from a Ferromagnet

Structure factor:

$$\left|\vec{F}\right|^{2} = \left|\sum_{d} (b_{d} + \sigma r_{0}S_{\perp d}) e^{i\tau.d}\right|^{2} = \left|\sum_{d} b_{d} e^{i\tau.d}\right|^{2} + \left|\sum_{d} \sigma r_{0}S_{\perp d} e^{i\tau.d}\right|^{2} + 2\sigma \sum_{dd'} b_{d}r_{0}S_{\perp d} e^{i\tau.(d-d')}$$
If:
Nuclear
Nuclear
Magnetic
Nuclear-Magnetic

$$b_{d} \approx r_{0}S_{\perp d} \quad \left|\vec{F}\right|^{2} \approx \begin{pmatrix} 4|b_{d}|^{2} \text{ for } \sigma = 1\\ 0 \text{ for } \sigma = -1 \end{pmatrix}$$
Polarized Beam!

0 for $\sigma = -1$

Diffraction from a Ferromagnet II

Ni_{1.8}Pt_{0.2}MnGa

Singh, Sanjay, et al. APPLIED PHYSICS LETTERS 171904 (2012)

Diffraction from a simple cubic antiferromagnet I

 $\frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} r_0^2 \left| \frac{g}{2} F(\vec{q}) \right|^2 e^{-2W(k)} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{q}_{\alpha}\hat{q}_{\beta}) \frac{1}{2\pi\hbar} \int dt \ e^{-i\omega t} \sum_{ll'} e^{i\vec{q}\cdot(\vec{r_{ld}} - \vec{r}_{ld'})} \left\langle S_l^{\alpha}(0) S_{l'}^{\beta}(t) \right\rangle$

Diffraction from a simple cubic antiferromagnet II

$$\begin{array}{cccc}
\mathbf{A} & & \sum_{ll'} e^{i\vec{q}.(\vec{r_{ld}}-\vec{r}_{ld'})} \langle S_l^{\eta} \rangle \langle S_l^{\eta} \rangle = \langle S^{\eta} \rangle^2 N_m \sum_A e^{-i\vec{q}.l} \sum_d \sigma_d e^{-i\vec{q}.\vec{d}} \\
& \sum_{ll'} e^{i\vec{q}.(\vec{r_{ld}}-\vec{r}_{ld'})} \langle S_l^{\eta} \rangle \langle S_l^{\eta} \rangle \langle S_l^{\eta} \rangle = \langle S^{\eta} \rangle^2 N_m \sum_A e^{-i\vec{q}.l} \sum_d \sigma_d e^{-i\vec{q}.\vec{d}} \\
& \sum_A e^{-i\vec{q}.l} = \frac{(2\pi)^3}{v_{0m}} \sum_{\tau_m} \delta(\vec{q}.\vec{\tau_m}) \\
& \sum_A e^{-i\vec{q}.l} = \frac{(2\pi)^3}{v_{0m}} \sum_{\tau_m} \delta(\vec{q}.\vec{\tau_m}) \\
& A \end{array}$$

$$\frac{d^2\sigma}{d\Omega dE_f} = r_0^2 N_m \frac{(2\pi)^3}{v_{0m}} \sum_{\tau_m} |F_M(\overrightarrow{\tau_m})|^2 e^{-2W(k)} \{1 - (\widehat{\tau_m}, \widehat{\eta})_{av}^2\} \delta(\vec{q}, \overrightarrow{\tau_m})$$

Magnetic structure factor:

$$F_M(\overrightarrow{\tau_m}) = \frac{1}{2}g\langle S^\eta \rangle F(\overrightarrow{\tau_m}) \sum_d \sigma_d e^{-i\overrightarrow{\tau_m}\cdot\vec{d}}$$

Diffraction from a simple cubic antiferromagnet III

$$\sum_{A} e^{-i\vec{q}.\vec{r_{l}}} = \frac{(2\pi)^{3}}{v_{0m}} \sum_{\tau_{m}} \delta(\vec{q}.\vec{\tau_{m}})$$
$$\vec{q} = \vec{\tau_{m}} = t_{1}\tau_{1} + t_{2}\tau_{2} + t_{3}\tau_{3}$$
$$\sum_{d} \sigma_{d} e^{-i\vec{q}.\vec{d}} = \sum_{d} \sigma_{d} e^{-i\vec{\tau_{m}}.\vec{d}}$$

For a magnetic lattice: face centered cubic

$$= 0, \tau_m = t_1, t_2, t_3$$
$$= 2, \tau_m = t_1 + \frac{1}{2}, t_2 + \frac{1}{2}, t_3 + \frac{1}{2}$$

Nuclear and magnetic Bragg scatter ocurr at different points in the reciprocal lattice space

Example: SrYb₂O₄

Example 2: SrYb₂O₄ II

$\mu(Yb1)$	$= \mu(Yb2)$										
(h, k, l)	E4nucl	E4mag	Gx	Gy	Gz	Ax	Ay	Az	Cx	Cy	Cz
(0, 1, 0)	55.6	3.4	0.2	0	2	0	0	0	471	0	0.1
(1, 0, 0)	100.9	1.1	0	0	0	0	481	481	0	1769	1770
(1, 1, 0)	158.53	74.5	0.1	0.2	0.3	0.1	0.1	0.3	1	0.1	0.1
(0, 2, 0)	635.19	615.4	0	0	0	690	0	696	0	0	0
(1, 2, 0)	2093.5	8.1	470	200	770	5	1.8	7	19	6	26
(2, 0, 0)	3467.5	82.8	0	330	330	0	0	0	0	0	0
(2, 1, 0)	85.87	24.3	0.1	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.1
(0, 3, 0)	60.18	5.36	0.1	0	0.1	0	0	0	0.2	0	0.2
(2, 2, 0)	1557.17	37.64	2.5	6	10	66	92	58	136	188	324
(1, 3, 0)	342.21	198.6	0.1	0.1	1	0.1	0.1	0.1	0.1	0.1	0.1
(0, 0, 1)	70.42	826.0	172	175	0	0	0	0	0.1	0	0
(3, 0, 0)	244.42	3.6	0	0	0	0	168	171	0	3	3
(0, 1, 1)	870.13	173.62	0	0	0	0.1	0.1	0	0	0	0
$\mu(Yb1)$	$\neq 0$	$\mu(Yb2)$	= 0								
(0, 1, 0)	55.6	3.4	314	0	314	0	0	0.2	0	0	471
(1, 0, 0)	100.9	1.1	0	0	0	0	126	126	0	437	437
(1, 1, 0)	158.53	74.5	35	50	85	43	115	198	24	32	56
(0, 2, 0)	635.19	615.4	0	0	0	173	0	73	0	0	0
(1, 2, 0)	2093.5	8.1	141	49	190	17	0.5	2.2	6	2	8
(2, 0, 0)	3467.5	82.8	0	85	85	0	0	0	0	0	0
(2, 1, 0)	85.87	24.3	4	21	24	12	71	84	6	31	37
(0, 3, 0)	60.18	5.36	53	0	53	0	0	0	15	0	15
(2, 2, 0)	1557.17	37.64	1.4	2	3.5	15	21	36	34	48	83
(1, 3, 0)	342.21	198.6	2.5	0.7	5	60	9	68	16	2.6	20
(0, 0, 1)	70.42	826.0	44	44	0	0	0	0	0	0	0
(3, 0, 0)	244.42	3.6	0	0	0	0	42	42	0	0.4	0.4
(0, 1, 1)	870.13	173.62	0	0	0	46	42	3.5	0	0	0

Representation Analysis

$$F(++++), C(++--), G(+--+)$$

 $A(+-+-)$

 $\Gamma_1(C_x F_y), \Gamma_2(F_x C_y), \Gamma_3(G_x A_y), \text{ and } \Gamma_4(A_x G_y),$ $\Gamma_5(C_z), \Gamma_6(F_z), \Gamma_7(G_z), \Gamma_8(A_z)$

Basireps -Fullprof

Example 2: SrYb₂O₄ III

```
....
        _____
                                                     _____
  Data for PHASE number: 2 ==> Current R Braqq for Pattern# 1: 62.93
SrYb204 magnetic
*Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isu Str Furth
                                                  ATZ
                                                        Nvk Nor More
  8 0 0 0.0 0.0 1.0 1 4 -1 0 0
                                                 823.842 0
                                                             ่ด 1
!Jvi Jdi Hel Sol Mom Ter Brind RMua
                                       RMub
                                               RMuc
                                                     Jtyp Nsp_Ref Ph_Shift N_Domains
  ิด
                                                                      ิด
                                                         1
P -1
                        <--Space group symbol for hkl generation</p>
!Nsym Cen Laue MagMat
  1 1 1 1
SYMM x,y,z
MSYM u,v,w,0.0
tAtom Typ Mag Vek
                             Y
                     х
                                    z
                                            Biso
                                                   Occ
                                                            Rх
                                                                    Rų
                                                                           Rz
                        beta11 beta22 beta33
                  Ιz
                                                 MagPh
    Ιx
            Ιų
YB11 MMN2 1
                                                 1.00000
                                                                  1.900
                  0.42170 0.10900 0.25000 0.20000
                                                           3.370
                                                                          0.000
                                                                                #color 1 0 0 1 scale 2.3
               8
                     0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
                                                            0.00
                                                                   0.00
                                                                           0.00
     0.000
            0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                 0.00000
     0 00
             0 00
                    0 00
                            0 00
                                    0 00
                                           0 00
                                                    0 00
YB12
     MMN2
           10
                  0.57830
                           .89100
                                   75000
                                         0.20000
                                                   00000
                                                           3.370
                                                                 -1.900
                                                                          0.000
                                                                                #color 1 0 0 1 scale 2.3
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
    0.000
            0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                 6.66666
     0.00
             0.00
                     0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
YB13 MMN2
                  0.92170
                           39100
                                   25000
                                         0.20000
                                                   00000
                                                          -3.370
                                                                  1.900
                                                                          0.000
           1 0
                                                                                 #color 1 0 0 1 scale 2.3
                                                    0.00
                                                                    0.00
                                                                           0.00
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                            0.00
    0.000
            0.000
                           0.000
                    0.000
                                   0_000
                                           0_000
                                                 0.00000
     0.00
             0.00
                     0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
YB14 MMN2 1 0
                                 0.75000 0.20000
                                                          -3.370
                                                                 -1.900
                                                                                 #color 1 0 0 1 scale 2.3
                  0.07830
                           60900
                                                   00000
                                                                          0.000
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
            0.000
    0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                   00000
                                                 Й.
     0.00
             0.00
                     0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
YB21
     MMN2
                                                 1.00000
                                                           0.810
                                                                  1.900
                                                                          0.000
           1 0
                  0.42530
                          3.61230
                                 0.25000
                                         0.20000
                                                                                #color 1 0 0 1 scale 2.3
                                                                           0.00
                                                                   0.00
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
                                                            0.00
     0.000
            0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                   00000
     0.00
             0.00
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
YB22
     MMN2 1 0
                         0.38730 0.75000 0.20000
                                                 1.00000
                                                           0.810 -1.900
                                                                          0.000
                                                                                #color 1 0 0 1 scale 2.3
                  0.57470
                     0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
     0.000
            0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                 0.00000
     0.00
             0.00
                     0.00
                            0.00
                                            0.00
                                    0.00
                                                    0.00
YB23
     MMN2
           10
                  0.92530
                           88770
                                   25000
                                         0.20000
                                                   00000
                                                          -0.810
                                                                  1.900
                                                                          0.000
                                                                                #color 1 0 0 1 scale 2.3
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
                                                            0.00
                                                                    0.00
                                                                           0.00
    0.000
            0.000
                    0.000
                           0.000
                                   0.000
                                           0.000
                                                 0.00000
     0.00
             0.00
                    0.00
                            0 00
                                    0.00
                                           0 00
                                                    0.00
YB24
     MMN2
            1 0
                    07470
                           11230
                                   75000
                                         0.20000
                                                   00000
                                                          -0.810 -1.900
                                                                          0.000
                                                                                #color 1 0 0 1 scale 2.3
                     0.00
                            0.00
                                    0.00
                                           0.00
                                                    0.00
                                                            0.00
                                                                   0.00
                                                                           0.00
    0.000
            0.000
                           0.000
                                   0.000
                                           0.000
                                                 0.00000
                    0.000
     0.00
             0.00
                    0.00
                            0.00
                                    0.00
                                            0.00
                                                    0.00
```

Rietvel Refinement

Example 2: SrYb₂O₄ IV

Name	$\mu_x(\mu_B)$	$\mu_y(\mu_B)$	$\mu(\mu_B)$
Yb11	3.37(5)	-1.9(1)	3.90(8)
Yb12	-3.37(5)	1.9(1)	3.90(8)
Yb13	-3.37(5)	-1.9(1)	3.90(8)
Yb14	3.37(5)	1.9(1)	3.90(8)
Yb21	0.81(5)	-2.0(1)	2.2(1)
Yb22	-0.81(5)	2.0(1)	2.2(1)
Yb23	-0.81(5)	-2.0(1)	2.2(1)
Yb24	0.81(5)	2.0(1)	2.2(1)
$R_p = 3.53,$	$R_{exp}=5.18,$	$R_{exp}=5.76$	

PHYSICAL REVIEW B 86, 064203 (2012)

Flux line lattices in Superconductors

Meissner effect

Normal state

Applied Field, B

Neutron

Direction

Superconducting state

phi

Flux line lattice

san

Scattering geometry

The momentum transfer, \mathbf{Q} , is roughly perpendicular to the flux lines, therefore all the magnetization is seen.

(recall
$$\frac{d\sigma_{magnetic}}{d\Omega} = \langle \mathbf{M}_{\perp}^{*}(\mathbf{Q}) \rangle \langle \mathbf{M}_{\perp}(\mathbf{Q}) \rangle$$
)

Diffuse elastic magnetic scattering

Magnetic Coulomb Phase in the Spin Ice $Ho_2Ti_2O_7$

T. Fennell, ¹⁴ P. P. Deen, ¹ A. R. Wildes, ¹ K. Schmalzl, ² D. Prabhakaran, ³ A. T. Boothroyd R. J. Aldus, ⁴ D. F. McMorrow, ⁴ S. T. Bramwell⁴

SCIENCE VOL 326 16 OCTOBER 2009

Short range magnetic order

Short range magnetic order II

Petrenko, et al., Phys. Rev. B **78**, 184410 (2008) Hayes, et al., Phys. Rev. B **84**, 174435 (2011).

Parametric studies

Figure 8. Structural and magnetic phase transition as a function of temperature in a single crystal of $\rm SrFe_2As_2$.

Zhao 2008 Phys. Rev. B 78: 140504(R), 1-4..

FIG. 4. (Color online) ($\mu_0 H, T$)-phase diagram of LiNiPO₄ for Toft-Petersen PHYSICAL REVIEW B **84**, 054408 (2011)

Experimental methods

Diffractometers

Polarized diffractometers

Triple axis spectrometers

SANS

