

Introduction to neutron reflection

Adrian Rennie

Inteference of waves Refractive index Critical angle, total reflection

Reflection

Reflection and Refraction: Snell's Law

For specular reflection:

Optical Notation

$$\phi_i = \phi_r$$

Transmitted beam is refracted: $n_2 \sin \phi_t = n_1 \sin \phi_i$

n is refractive index

Reflection and Refraction: Snell's Law

For specular reflection:

Neutron Reflection Notation

 $\theta_i = \theta_r$

Transmitted beam is refracted: $n_2 \cos \theta_t = n_1 \cos \theta_i$

n is refractive index

Reflection – measured quantities

Reflection

Reflected beam deflected: 2θ Reflectivity $R(Q) = I_R/I_0(\lambda)$ Momentum transfer $Q = (4\pi/\lambda) \sin \theta$

UNIVERSITET

Demonstration Calculations

www.ncnr.nist.gov/instruments/magik/calculators/reflectivity-calculator.html

www.ncnr.nist.gov/instruments/magik/calculators/magnetic-reflectivity-calculator.html

Critical Angle and Below (critical wavelength and above)

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_c or θ_c

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface

R (Q) = 1 for $\theta < \theta_c$ is often used as a calibrant

 $R(Q) \sim 1/Q^4$ for sharp interface

Total reflection below critical angle θ cos $\theta = n_2/n_1$

UNIVERSITET

Calculating Refractive Index

UPPSALA UNIVERSITET

Neutrons

$$n = 1 - (\lambda^2 \Sigma_i b_i / V / 2\pi)$$

 $\boldsymbol{\lambda}$ is the wavelength

 $\boldsymbol{\Sigma}_i \: \boldsymbol{b}_i$ is the sum of scattering lengths in volume V

b is known for most stable nuclei

 $\rho = \Sigma_i \; b_i / V$

Scattering Lengths of Nuclei

UPPSALA UNIVERSITET

Nucleus	Scattering Length / fm	
¹ H	-3.741	
² H (or D)	6.675	
С	6.648	
Ο	5.805	
Si	4.151	
Cl	9.579	

Source: H. Rauch & W. Waschkowski

Properties of Common Materials

Material	Scatt. Length Density / 10 ⁻⁶ Å ⁻²	Refractive index at 10 Å
H ₂ O	-0.56	1.000009
D ₂ O	6.35	0.999899
Si	2.07	0.999967
Air	0	1.000000
Polystyrene	1.4	0.999971

UPPSALA UNIVERSITET

Contrast in a Thin Film

UPPSALA UNIVERSITET

Calculation for Neutrons

100 Å layer with ρ =1, 3 & 5 x 10^{-6} Å^{-2} on Si (ρ =2.07 x 10^{-6} Å^{-2})

Increasing contrast changes visibility of fringes

Phase change makes large difference

Fringes (Kiessig fringes) – spacing indicates film thickness for a single layer.

Reflectivity from rough surfaces is decreased.

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

Intensity of Reflected Signal

UPPSALA UNIVERSITET

> Waves interfere constructively for 2 d sin $\theta = \lambda$, 2 λ , 3 λ ... (Bragg's law)

Measured reflectivity will depend on angle and wavelength.

Total reflection for angles less than critical angle, $\theta_c = \arccos(n_1/n_2)$

Useful Physical Ideas

Models for complex interfaces can be constructed from multiple thin layers of different refractive index, n or scattering length density, ρ .

UPPSALA

Useful Physical Ideas

Isotopes (e.g. D/H substitution) can be used to label particular species or alter contrast

Neutrons have spin – effectively a field dependent contribution to scattering length

Abeles Optical Matrix Method

UPPSALA UNIVERSITET

$$r_{j} = \begin{bmatrix} e^{i\beta_{j-1}} & r_{j-1}e^{i\beta_{j-1}} \\ r_{j-1}e^{-i\beta_{j-1}} & e^{-i\beta_{j-1}} \end{bmatrix}$$

 $\beta_j = (2\pi/\lambda)n_j d_j \sin\theta_j$ $p_j = n_j \sin\theta_j$ $r_j = (p_{j-1} - p_j)/(p_{j-1} + p_j)$ $M_R = [M_1][M_2]...[M_{n-1}]$

$R(Q) = M_{21}M_{21} * / M_{11}M_{11} *$

$$\mathbf{b}_{\text{tot}} = \mathbf{b}_{\text{nuclear}} \pm \mathbf{b}_{\text{m}}$$

$$\mathbf{b}_{tot} = \mathbf{b}_{nuclear} \pm \mathbf{b}_{m}$$

Scattering and Reflection

UPPSALA UNIVERSITET

> $\rho(Q)$ is Fourier transform of the scattering length density distribution normal to the interface, $\rho(z)$

 $R(Q) = \frac{16\pi^2}{Q^2} \left| \rho(Q) \right|^2$

$$\rho(Q) = \int_{-\infty}^{\infty} \rho(z) e^{-iQz} dz$$

For sharp interface:

 $R(Q) \sim 1/Q^4$

Partial Structure Factors

UPPSALA UNIVERSITET

Interface consists of distinct components: 1, 2, 3

$$R(Q) = \frac{16\pi^2}{Q^2} |\int \rho(z) e^{iQz} dz|^2$$

$$\rho(z) = b_1 n_1(z) + b_2 n_2(z) + b_3 n_3(z)$$

 $R(Q) = \frac{16\pi^2}{Q^2} (b_1^2 h_{11} + 2b_1 b_2 h_{12} + b_2^2 h_{22} + 2b_2 b_3 h_{23} + b_3^2 h_{33} + 2b_3 b_1 h_{31})$

h_{ij} are transforms of *n_in_j* – pair correlation functions Lu, J. R.; Thomas, R. K.; Penfold, J. *Adv. Coll. Inter. Sci.* **2000**, 84, 143-304.

Practical Aspects of Neutron Reflection How to Collect Data

Adrian R. Rennie

Reflection – measured quantities

Reflection

Reflected beam deflected: 2 θ Reflectivity $R(\theta, \lambda) = I_R/I_0(\lambda)$ Momentum transfer $Q = (4\pi/\lambda) \sin \theta$

Best Sources of Neutrons

ILL reactor continuous Thermal Flux 1.5 x 10¹⁵ n cm⁻² s⁻¹

SNS, ORNL 60 Hz, 300 μs 5 x 10¹⁷ n cm⁻² s⁻¹ (Peak)

Neutrons: Speed & Wavelength

UPPSALA UNIVERSITET

Velocity, v, from de Broglie relation v $\lambda = 3956 \text{ m s}^{-1} \text{ Å}$

i.e. 10 Å has 400 m s⁻¹

Gravity is significant, separate wavelengths mechanically

Detection time (after source pulse) gives wavelength

Choppers can select a wavelength

D17 Reflectometer

Practical Issues

Reflectivity drops quickly with increasing Q (or angle). Signal is easily 'lost' in background.

To observe fringes it will be necessary to measure over an appropriate range of Q and to have sufficient resolution (Δ Q small enough).

Reflection from a Thin Film

UPPSALA UNIVERSITET

Model calculation on smooth surface.

Fringe spacing depends on thickness

Fringe spacing ~ $2\pi/d$

Model layer with $\rho = 5 \times 10^{-6} \text{ Å}^2$ on Si (2.07 x 10⁻⁶ Å ⁻²) Blue 30 Å, Pink 100 Å. No roughness.

Resolution in Q

 $Q = (4\pi/\lambda) \sin \theta$

Depends on $\Delta\lambda$ and $\Delta\theta$ Angle resolution, $\Delta\theta$, depends on collimation (slits)

Wavelength resolution depends on monochromator or time resolution in measuring neutron pulse

Higher Resolution = Lower Flux

 $(\varDelta Q/Q)^2 = (\varDelta \lambda/\lambda)^2 + (\varDelta \theta/\theta)^2$

Effects of Resolution

Silicon substrate: film thickness 1500 Å (150 nm) scattering length density 6.3×10^{-6} Å⁻²

Sample Holder

D17 reflectometer ILL, France

UNIVERSITET

Rotation table must have centre on beam axis

Sample must be centred on rotation (half obscure the direct beam) – eucentric mount

Determine θ from the position of beam on a detector

Design mount with surface at centre of rotation of ω . Eucentric mount.

Put centre of surface on the line through axis of rotation (x direction)

The rotation ω stage must be centred on the incident beam.

Aligning a Sample

Set sample and detector to nominal zero Choose fine slits to give collimated beam

Aligning a Sample

Move z to approximate sample in beam position

alignment on direct beam

Set detector to small angle of reflection (e.g. 0.5°) and align more precisely.

Scan ω and look for peak. Position is 0.378° and so offset is -0.122°.

alignment on direct beam

Check translation (z) offset in reflection mode.

Scan z and look for peak. Position is -3.38 mm.

UNIVERSITET

Comments on Alignment

Using the results of alignment scans needs offsets or new zero positions to be set on the instrument. Warning: there is no general convention of signs on different instruments

Linear thermal expansion can be ~2 x 10^{-5} K⁻¹. 4 cm of aluminium changed by 50 C gives a shift of 0.04 mm.

Calibrations

UPPSALA UNIVERSITET

Scan angle, measure different λ or a combination of λ and angle

Measure direct beam (through sample environment if needed)

Incident beam spectrum, LARMOR

UNIVERSITET

Samples

Low incident angle requires large uniform surface area. Footprint ~ s / tan θ .

Areas often several cm².

Smooth surface. 10 Å roughness will reduce the reflectivity at q=0.1 Å⁻¹ by 2.7. 15 Å reduces reflectivity by a factor of 10.

Liquids will have surface oscillations (capillary waves). Need to avoid other, induced waves.

Sample Cell

In place of a drop use, a uniform flat surface

What is measured?

UPPSALA UNIVERSITET

Reflected signal may have a large background

For hydrogenous substrate ~ 5 x 10⁻⁶ incident beam

Attenuation by reduced transmission (caused by scattering or absorption) may be significant

Critical Angle and Below (critical wavelength and above)

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_c or θ_c

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface

R = 1 for $\theta < \theta_c$ is often used as a calibrant

Total reflection below critical angle θ cos $\theta = n_2/n_1$

Intensity of Reflected Signal

Waves interfere constructively for

2 d sin θ = λ , 2 λ , 3 λ ...

- Measured reflectivity will depend on angle and wavelength. Add wave amplitudes with allowance for phase and calculate intensity as square of amplitude.
- Total reflection for angles less than critical angle, $\theta_c = \arccos(n_1/n_2)$

Fresnel Formula

UPPSALA UNIVERSITET

Reflection from an interface between two media with $\Delta \rho = \rho_1 - \rho_2$ is for Q >> Q_c: R(Q) = 16 $\pi^2 (\Delta \rho)^2 / Q^4$

Note

This does not depend on sign of $\Delta \rho$.

Fate of a Neutron at an Interface

- Reflected
- Scattered/Diffracted from surface
- Absorbed
- Scattered from bulk (either side of surface)
- Other accidents

What does background look like?

UPPSALA UNIVERSITET

X-ray scattering – glass Sinha et al., *Phys. Rev. B.* **38**, 2297, 1988.

Neutron scattering from D₂O and from null reflecting water

Rennie et al., *Macromolecules* **22**, 3466-3475 (1989).

FIG. 6. Calculation of diffuse scattering in the distortedwave Born approximation for rocking curve where θ_1 and θ_2 are varied such that 2θ is fixed at 1°. The asymmetry is due to the area of the illuminated surface decreasing as θ_1 is increased. The q_y direction has been integrated over. Parameters are $\sigma = 7$ Å, h = 0.2, $\xi = 7000$ Å, and the optical constants for Pyrex are given in Sec. V.

Contrast Matching

$H_2O \qquad \rho = -0.56 \times 10^{-6} \text{ Å}^{-2}$ $D_2O \qquad \rho = +6.35 \times 10^{-6} \text{ Å}^{-2}$

y × 6.35 + (1-y) × (-0.56) = 0 6.91 y = 0.56 or y = 0.56 /6.91 = 0.081

i.e. 8% by volume of D_2O in H_2O has n = 1

What does background look like?

UPPSALA UNIVERSITET

80

Scattering from D_2O and from null reflecting water (8% D_2O)

Rennie et al., Macromolecules 22, (1989), 3466-3475.

Comments on Calculations

UPPSALA UNIVERSITET

Programs that lose data

It is common to use logaritmic scales but background subtraction can give negative data points. R Q⁴ is useful.

Experimental issues

Resolution – often needs to be included

Illumination

Small samples are often not able to reflect all the beam and a geometrical correction is applied.

Absolute reflectivity

Data is constrained if it is on an an absolute scale

Roughness

Reflectivity from rough surfaces is decreased.

'Gaussian' roughness' – intensity decreases by $exp(-Q^2\xi^2/2)$ for scattering vector, Q and amplitude of roughness, ξ .

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

Do's and Don'ts

• Do not bend samples – care with mounts

 Use anti-vibration mounts for liquids – air borne noise causes vibrations

• Capillary waves cause scattering

J. A. Dura, J. LaRock 'A molecular beam epitaxy facility for in situ neutron scattering' *Rev. Sci. Instrum.* **80**, (2009), 073906.

A. A. Baker, W. Braun, G. Gassler, S. Rembold, A. Fischer, T. Hesjedal 'An ultra-compact, high-throughput molecular beam epitaxy growth system' *Review of Scientific Instruments* **86**, (2015), 043901.

High Pressure

Martin Kreuzer, Thomas Kaltofen, Roland Steitz, Beat H. Zehnder, Reiner Dahint 'Pressure cell for investigations of solid–liquid interfaces by neutron reflectivity' *Rev. Sci. Instrum.* **82**, (2011), 023902.

Alexandros Koutsioubas, Didier Lairez, Gilbert Zalczer, Fabrice Cousin 'Slow and remanent electric polarization of adsorbed BSA layer evidenced by neutron reflection' *Soft Matter*, **8**, (2012), 2638-2643.

Continuously Generated Fresh Liquid Surface

Julian Eastoe, Alex Rankin, Ray Wat, Colin D. Bain, Dmitrii Styrkas, Jeff Penfold 'Dynamic Surface Excesses of Fluorocarbon Surfactants' *Langmuir*, **19**, (2003), 7734-7739.

Battery Electrodes

UPPSALA <u>UNIVERSITET</u>

B. Jerliu, L. Dörrer, E. Hüger, G. Borchardt, R. Steitz, U. Geckle, V. Oberst, M. Bruns, O. Schneider, H. Schmidt 'Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries' *Phys. Chem. Chem. Phys.*, **15**, (2013), 7777-7784.

Liquid / Liquid Interfaces

A. Zarbakhsh, J. Bowers, J. R. P. Webster, 'A new approach for measuring neutron reflection from a liquid/liquid interface' *Meas. Sci. Technol.* **10**, (1999), 738-743.

What has not (yet) been covered?

Ellipsometry and X-rays

Needs more calculations for *s* and *p* waves

How to write a minimisation routine?

How to install your favourite program?

Specific examples of real samples etc.