

Modelling Data – Better Approaches How to get useful information?

Adrian R. Rennie

Monolayers – Simple Interpretation

Define $g_s(Q_z)$ in terms of measured reflectivity and $R_F(Q_z)$ (the Fresnel reflectivity for perfectly sharp interface):

$$g_s(Q) = Q^2 (R - R_F) / (1 - R)$$

In
$$g_s(Q) \approx -t^2 Q^2 /12$$

Roughly In $(Q^2 R) \approx -t^2 Q^2/12$

Contrast match of two bulk phases $R_F(Q) = 0$

Real Interfaces are not just layers

Slab models are easy to calculate but people are not very interested in just thickness and scattering length density

Surface Excess and Area per Molecule

Volume per molecule:

Scattering length: b_m

Scattering length density:

$$\rho = b_m / V_m$$

Thickness of layer:

Scattering length density

Area per molecule:

$$V_{\rm m} = t A_{\rm m}$$

Scattering length density:

$$\rho = (b_m / V_m) = b_m / (t A_m)$$

 ρ_{T}

ρ

Area per molecule: $A_m = b_m / t \rho$

Adsorption of Surfactant

Surface active molecules

Amphiphilic

Bind to surface – how?

What are properties?

Hexadecyl trimethyl ammonium bromide $C_{16}H_{33}N(CH_3)_3^+$ Br

Tail

Head

Some Possible Structures

Monolayer

Bilayer

Cationic Surfactant

CTAB at 27° C on amorphous SiO₂

(a) D_2O (b) cmSi O_2 at 6 ×10⁻⁴ M

Models

Solid line – Bilayer

Dashed line - Monolayer

Cationic Surfactant

- CTAB 27 C on SiO₂
- Label heads & tails

Head 6 +/- 2 Å
Tail 28 +/- 4 Å
Roughness ~ 8 Å
Fractional Coverage
35% at 3 ×10⁻⁴ M
80% at 6 ×10⁻⁴ M

Langmuir **6**, 1031-1034 (1990). J. Colloid Interf. Sci. **162**, 304-310 (1994).

Plotting Data

Different representation is helpful

How to Look at Data?

Log₁₀ R vs Q

RQ⁴ vs Q

Effects of Resolution

Silicon substrate: film thickness 1500 Å scattering length density 6.3×10^{-6} Å⁻²

Non-Uniform Surfaces

If you have patches of different layers at an interface do you average the density or average the

reflectivity?

What is the coherence length of a neutron?

Describing Polymers

- Interdiffusion is this roughness?
- Brushes parabolic density profile
 (E. P. K. Currie et al *Physica* B, **283** 17 21)
- Other scaling laws e.g. O. Guiselin *J. Phys.* 50, 3407-3425 (1989).

We expect smooth profiles!

Thermoresponsive polymer brush

Fig. 6 Experimental reflectivity profiles obtained at ILL (circles) and fitted reflectivity profiles using a polymer layer model (dashed curves) and a lattice mean-field theory (solid curves) for polymers grafted on a Si/SiO₂/initiator surface at 328 K (top) and 293 K (bottom) in D₂O (left) and cmSi (right). Reflectivity profiles using a polymer layer model with zero roughness are also shown (dotted curves). The top right panel contains an inset displaying $q^4R(q)$ versus q for small q.

J. Zhang, et al., Soft Matter, 4, 500-509 (2008).

Repeating Layers

A one dimensional crystal

Bragg's law

Intensity of peaks may Depend on size and disorder

Calculate reflectivity for a profile

Using Multiple Contrasts

Simultaneous fits for multiple data sets

Off-specular Scattering, GISANS, Near-surface SANS

Adrian R. Rennie

Interfaces are 3-dimensional

Understanding rheology – shear flow

Brown et al. Progress in Colloid and Polymer Science 98, (1995) 99-102.

Fate of a Neutron at an Interface

- Reflected
- Scattered/Diffracted from surface
- Absorbed
- Scattered from bulk (either side of surface)
- Other accidents

Evanescent Wave

neutrons

Below k_c no travelling wave enters the sample

Amplitude decays with depth in sample

Decay length depends on $(\theta_c - \theta)$

Evanescent wave can cause scattering

Looking at Materials

Anneli Salo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6746303

UPPSALA UNIVERSITET

Looking at Materials

Anneli Salo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6746303

Off-specular & Reflection

Frédéric Ott, Sergey Kozhevnikov 'Off-specular data representations in neutron reflectivity', J. Appl. Cryst. 44, (2011), 359-369.

Scattering from Surface Structures

Peter Müller-Buschbaum 'GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films' *European Polymer Journal* **81**, (2016), 470-493.

Strong Off-specular Scattering

10% vol. dispersion, Radius ~350 Å. Sapphire substrate, $\theta_i = 0.35 \text{ deg}$

PS latex in D₂O Liquid/Sapphire

Transform to map of Q_zQ_x

10% vol. dispersion, Radius ~350 Å, sapphire substrate, $\theta_i = 0.35$ deg

Some Scattering at Interfaces

X-ray scattering – glass

Sinha et al., *Phys. Rev. B.* **38**, 2297, 1988.

FIG. 6. Calculation of diffuse scattering in the distorted-wave Born approximation for rocking curve where θ_1 and θ_2 are varied such that 2θ is fixed at 1°. The asymmetry is due to the area of the illuminated surface decreasing as θ_1 is increased. The q_y direction has been integrated over. Parameters are $\sigma = 7$ Å, h = 0.2, $\xi = 7000$ Å, and the optical constants for Pyrex are given in Sec. V.

Incoherent background

Scattering from D₂O and from null reflecting water

 $(8\% D_2O)$

Rennie et al., Macromolecules 22, (1989), 3466-3475.

Interfacial structure: GISANS

Calculating Scattering

Distorted Wave Born Approximation (DWBA)

Simply allow for sequential events e.g.

Reflection then Scattering Refraction then Scattering Scattering then Reflection

Reflection followed by weak scattering.

- (a) Optical Matrix Calculation
- (b) Weak Scattering (Born approximation)

How deep is the evanescent wave?

Silicon/D₂O Interface

Copolymer films

P. Müller Buschbaum et al. J. Appl. Cryst. 47, (2014), 1228–1237

Changes with Depth

Horizontal cuts

- Used wavelength to probe different depths
- Longer wavelength looks neare the surface

Diffraction from Surface Layers

Penetration depth

$$z_{1/e} = \sqrt{2}\lambda / 4\pi \left[\sqrt{(\theta_i^2 - \theta_c^2)^2 + (\frac{\lambda}{2\pi}\mu)^2} - (\theta_i^2 - \theta_c^2) \right]^{1/2}$$

A depth sensitive technique:

Wavelength Incident angle

Data at different angles

Data at different angles

Calculations & Intensity Data

D22 - ILL

QCM-D data: structure forms with a separation from the interface [Hellsing et al. 2017, *manuscript*]

NG3 SANS - NCNR

Scattering at Interfaces

- Off-specular scattering
- Near Surface SANS
- GISANS

What is the difference?

PS latex in D₂O Liquid/Sapphire

Transform to map of Q_zQ_x

10% vol. dispersion, Radius ~350 Å, sapphire substrate, $\theta_i = 0.35$ deg

PS latex in D₂O – sapphire surface

Sum along Q_x

10% vol dispersion, 0.35

PS latex in D₂O – sapphire surface

Assign Bragg peaks (index)

$$Q_1 = 0.00282 \text{ Å}^{-1}$$

 $d = 2230 \text{ Å}$

3 first peaks outside range

10% vol dispersion, 0.35, 0.8 and 1.5 deg

PS latex in D₂O – sapphire surface

Sum along Q_x

10% vol dispersion, 0.35

Compare Qx and Qz

M. S. Hellsing, et al. Applied Physics Letters, 100, (2012), 221601.