

Neutron Imaging

Luise Theil Kuhn

(Head of Section Imaging and Structural Analysis) <u>luku@dtu.dk</u>

DTU Energy Department of Energy Conversion and Storage

Motivation

This module's important concepts

- Instrumentation
- Radiography
- Tomography
- In operando
- Virtual Imaging experiment

Learning objectives

A student who has successfully completed this module should be able to:

- Describe how the image and contrast is formed during neutron imaging and how it differs from X-ray imaging
- Explain the contributions to the neutron attenuation, and explain the relationship between the attenuation coefficient and the scattering cross section
- Explain the principles behind various types of neutron imaging methodologies
- Decide which combination of pinhole diameter, pinhole-sample distance, and sample-detector distance gives the best spatial resolution for a given experimental setup

Learning objectives

A student who has successfully completed this module should be able to:

- Decide which of the experimental parameters pinhole diameter, pinholesample distance, and sample-detector distance you should modify to reduce the blur at a given neutron flux and divergence
- Evaluate the quality of a tomographic reconstruction by applying the filtered backprojection algorithm
- Evaluate the advantages of neutron radiography compared to neutron tomography
- Give design principles for a neutron imaging setup for 2D and 3D analysis of a given type of sample

Image and contrast formation

 μ

 ρ

 σ

M

Image and contrast formation

Radiography

Setup: ICON @ PSI

- 1. Pinhole
- 2. Flight tube
- 3. Beam limiters
- 4. Flight tube
- 5. Sample stage for small samples
- 6. Sample stage for large samples

Spatial resolution

l – Distance Object-Detector

Strobl, M. et al. (2009). J. Phys. D. Appl. Phys. 42, 243001.

Spatial resolution - Siemens star

32.9 µm

Trtik, P. et al. (2015). Physics Procedia. 69, 169.

Detectors

Charged Coupled Device

Multi Channel Plate

scintillator

http://www.novascientific.com/technology/

Principle for data acquisition in imaging experiment

- 1. Raw image, I_{θ}
- 2. Dark field image (no beam), correct for dark-current in detector system, *DF*
- 3. Flat-field image (open beam), correct for inhomogeneities in beam-profile and in detector screen, *FF*

4. Image, T_{θ}

Tomography

Tomographic reconstruction

15 ISA, DTU Energy, Technical University of Denmark

Fourier Slice Theorem

Principle for tomographic reconstruction

- 1. Collect projections, $P_{\theta}(x')$, for several angles
- 2. Calculate the Fourier transform of each projection
- 3. Apply the filter to Fourier domain to approximate the ideal case
- 4. Find the inverse Fourier transformation of the filtered projection
- 5. Sum over all angles to make the reconstruction

4 projections 8 projections 32 projections 128 projections

Cases: Proton Exchange Membrane Fuel Cell (PEMFC)

Cases: water uptake in plants

Strobl, M. et al. (2009). J. Phys. D. Appl. Phys. 42, 243001.

20 **ISA, DTU Energy, Technical University of Denmark**

Cases: Alkaline battery

Li-air battery cathode

Lithium Concentration

Strobl, M. et al. (2009). J. Phys. D. Appl. Phys. 42, 243001.

Nanda, J. et al. (2012). J. Phys. Chem. C. 116, 8401.

Cases: Soot in particulate filter for diesel engine

https://www.psi.ch/media/distribution-of-soot-particlesin-particulate-filters-of-diesel-vehicles

22 ISA, DTU Energy, Technical University of Denmark

Cases: Cultural heritage

Energy-resolved neutron imaging Bragg-edge imaging

Energy-selective neutron imaging Case: welding of steel

In situ Bragg-edge imaging linking strain and reduction in Solid Oxide Cell electrode supports

a) fixed point

0 min	80
1 min	70
3 min	60 G
5 min	50 LCTIC
10 min	0n 40 Q
15 min	egre
25 min	30 00
35 min	20 8
50 min	10
NORTH AND	0

M. Makowska et al, J.Appl.Cryst. **48**, 401(2015)

M. Makowska et al, J. Appl. Cryst. 49, 1674 (2016)

Neutron Bragg-edge tomography of crack evolution after 5x red-ox cycling

Neutron grating interferometry

object transmission a

Grünzweig, C. et al. (2006). *Phys. Rev. Lett.* **96**, 215505. Grünzweig, C. et al. (2008). *Appl. Phys. Lett.* **93**, 112504.

3D polarimetric neutron tomography of magnetic fields and current distributions

30 ISA, DTU Energy, Technical University of Denmark

Standard techniques

Summary

Computed tomography

Time-series imaging

Stroboscopic imaging

Energy selective imaging

Under development

Imaging with polarized neutrons

Neutron grating interferometry

Acknowledgments

DTU Energy Department of Energy Conversion and Storage

M. Makowska (now FRM II, Münich), M. Lacatusu, H. Lund Frandsen, L. Nilausen Cleemann

S. Koch, J. Johnsen

🔰 xnovotech

E. Mejdal Lauridsen

In situ Bragg-edge imaging of red-ox cycling (750 °C) of Solid Oxide Cell electrode supports

Initial oxidized state

